Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase
نویسندگان
چکیده
Bacteria harbouring circular chromosomes have a Xer site-specific recombination system that resolves chromosome dimers at division. In Escherichia coli, the activity of the XerCD/dif system is controlled and coupled with cell division by the FtsK DNA translocase. Most Xer systems, as XerCD/dif, include two different recombinases. However, some, as the Lactococcus lactis XerS/dif(SL) system, include only one recombinase. We investigated the functional effects of this difference by studying the XerS/dif(SL) system. XerS bound and recombined dif(SL) sites in vitro, both activities displaying asymmetric characteristics. Resolution of chromosome dimers by XerS/dif(SL) required translocation by division septum-borne FtsK. The translocase domain of L. lactis FtsK supported recombination by XerCD/dif, just as E. coli FtsK supports recombination by XerS/dif(SL). Thus, the FtsK-dependent coupling of chromosome segregation with cell division extends to non-rod-shaped bacteria and outside the phylum Proteobacteria. Both the XerCD/dif and XerS/dif(SL) recombination systems require the control activities of the FtsKγ subdomain. However, FtsKγ activates recombination through different mechanisms in these two Xer systems. We show that FtsKγ alone activates XerCD/dif recombination. In contrast, both FtsKγ and the translocation motor are required to activate XerS/dif(SL) recombination. These findings have implications for the mechanisms by which FtsK activates recombination.
منابع مشابه
Global Analysis of a Key Developmental Pathway in Plants
Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located a...
متن کاملThe Unconventional Xer Recombination Machinery of Streptococci/Lactococci
Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located a...
متن کاملXer Site Specific Recombination: Double and Single Recombinase Systems
The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). Xer...
متن کاملFtsK-dependent and -independent pathways of Xer site-specific recombination.
Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif site...
متن کاملAsymmetric DNA requirements in Xer recombination activation by FtsK
In bacteria with circular chromosomes, homologous recombination events can lead to the formation of chromosome dimers. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover by two tyrosine recombinases, XerC and XerD, at a specific site on the chromosome, dif. Recombination depends on a direct contact between XerD and a cell division protein, FtsK, which functions a...
متن کامل